SFr. 179.00
€ 193.32


bestellen

Artikel-Nr. 28358647


Diesen Artikel in meine
Wunschliste
Diesen Artikel
weiterempfehlen
Diesen Preis
beobachten

Weitersagen:



Autor(en): 
  • Basant Agarwal
  • Namita Mittal
  • Prominent Feature Extraction for Sentiment Analysis 
     

    (Buch)
    Dieser Artikel gilt, aufgrund seiner Grösse, beim Versand als 3 Artikel!


    Übersicht

    Auf mobile öffnen
     
    Lieferstatus:   Auf Bestellung (Lieferzeit unbekannt)
    Veröffentlichung:  März 2019  
    Genre:  Naturwissensch., Medizin, Technik 
     
    Application software / B / Biomedical and Life Sciences / Computational Linguistics / Computer and Information Systems Applications / Computer Appl. in Social and Behavioral Sciences / Computer applications in the social & behavioural sciences / Computer applications in the social and behavioural sciences / Data Mining / Data Mining and Knowledge Discovery / Expert systems / knowledge-based systems / Information Retrieval / Information Systems Applications (incl. Internet) / Information Systems Applications (incl.Internet) / Internet searching / Natural language & machine translation / Natural language processing (Computer science) / Natural Language Processing (NLP) / Neuroscience / Neurosciences
    ISBN:  9783319797755 
    EAN-Code: 
    9783319797755 
    Verlag:  Springer Nature EN 
    Einband:  Kartoniert  
    Sprache:  English  
    Serie:  #02 - Socio-Affective Computing  
    Dimensionen:  H 235 mm / B 155 mm / D  
    Gewicht:  203 gr 
    Seiten:  103 
    Illustration:  XIX, 103 p. 10 illus., 2 illus. in color., schwarz-weiss Illustrationen, farbige Illustrationen 
    Zus. Info:  Previously published in hardcover 
    Bewertung: Titel bewerten / Meinung schreiben
    Inhalt:
    The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model.

    Authors pay attention to the four main findings of the book :
    -Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features.
    - Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique performs better than Support Vector Machine (SVM) classifier for sentiment analysis.
    - The problem of data sparseness is alleviated by semantic clustering of features, which in turn improves the performance of the sentiment analysis.

    -Semantic relations among the words in the text have useful cues for sentiment analysis. Common-sense knowledge in form of ConceptNet ontology acquires knowledge, which provides a better understanding of the text that improves the performance of the sentiment analysis.


      



    Wird aktuell angeschaut...
     

    Zurück zur letzten Ansicht


    AGB | Datenschutzerklärung | Mein Konto | Impressum | Partnerprogramm
    Newsletter | 1Advd.ch RSS News-Feed Newsfeed | 1Advd.ch Facebook-Page Facebook | 1Advd.ch Twitter-Page Twitter
    Forbidden Planet AG © 1999-2024
    Alle Angaben ohne Gewähr
     
    SUCHEN

     
     Kategorien
    Im Sortiment stöbern
    Genres
    Hörbücher
    Aktionen
     Infos
    Mein Konto
    Warenkorb
    Meine Wunschliste
     Kundenservice
    Recherchedienst
    Fragen / AGB / Kontakt
    Partnerprogramm
    Impressum
    © by Forbidden Planet AG 1999-2024