SFr. 104.00
€ 104.00
BTC 0.0029
LTC 0.68
ETH 0.0468


bestellen

Artikel-Nr. 6749780


Diesen Artikel in meine
Wunschliste
Diesen Artikel
weiterempfehlen
Diesen Preis
beobachten

Weitersagen:



Autor(en): 
  • Inna K. Shingareva
  • Carlos Lizárraga-Celaya
  • Maple and Mathematica: A Problem Solving Approach for Mathematics 
     

    (Buch)
    Dieser Artikel gilt, aufgrund seiner Grösse, beim Versand als 3 Artikel!


    Übersicht

    Auf mobile öffnen
     
    Lieferstatus:   i.d.R. innert 4-7 Tagen versandfertig
    Veröffentlichung:  2009  
    Genre:  Schulbücher 
     
    angewandte informatik / Angewandte Mathematik / Datenverarbeitung / Anwendungen / Mathematik, Statistik / Intelligenz / Künstliche Intelligenz / KI / Künstliche Intelligenz / Künstliche Intelligenz - AI / Maple (EDV) / Mathematica / Mathematik / Mathematik / Informatik, Computer / Mathematik für Informatiker / Mathematik für Wissenschaftler / Mathematische und statistische Software / Numerische Mathematik / Roboter - Robotik - Industrieroboter / Zahl - Zählen - Zahlensystem - Ziffer / Zahlensysteme
    ISBN:  9783211994313 
    EAN-Code: 
    9783211994313 
    Verlag:  Springer-Verlag Kg 
    Einband:  Kartoniert  
    Sprache:  English  
    Dimensionen:  H 235 mm / B 155 mm / D 26 mm 
    Gewicht:  756 gr 
    Seiten:  483 
    Zus. Info:  CD-ROM 
    Bewertung: Titel bewerten / Meinung schreiben
    Inhalt:
    In the history of mathematics there are many situations in which cal- lations were performed incorrectly for important practical applications. Let us look at some examples, the history of computing the number ? began in Egypt and Babylon about 2000 years BC, since then many mathematicians have calculated ? (e. g. , Archimedes, Ptolemy, Vi` ete, etc. ). The ?rst formula for computing decimal digits of ? was disc- ered by J. Machin (in 1706), who was the ?rst to correctly compute 100 digits of ?. Then many people used his method, e. g. , W. Shanks calculated ? with 707 digits (within 15 years), although due to mistakes only the ?rst 527 were correct. For the next examples, we can mention the history of computing the ?ne-structure constant ? (that was ?rst discovered by A. Sommerfeld), and the mathematical tables, exact - lutions, and formulas, published in many mathematical textbooks, were not veri?ed rigorously [25]. These errors could have a large e?ect on results obtained by engineers. But sometimes, the solution of such problems required such techn- ogy that was not available at that time. In modern mathematics there exist computers that can perform various mathematical operations for which humans are incapable. Therefore the computers can be used to verify the results obtained by humans, to discovery new results, to - provetheresultsthatahumancanobtainwithoutanytechnology. With respectto our example of computing?, we can mention that recently (in 2002) Y. Kanada, Y. Ushiro, H. Kuroda, and M.
      



    Wird aktuell angeschaut...
     

    Zur├╝ck zur letzten Ansicht


    AGB | Datenschutzerklärung | Mein Konto | Impressum | Partnerprogramm
    Newsletter | 1Advd.ch RSS News-Feed Newsfeed | 1Advd.ch Facebook-Page Facebook | 1Advd.ch Twitter-Page Twitter
    Forbidden Planet AG © 1999-2021
    Alle Angaben ohne Gewähr
     
    SUCHEN

     
     Kategorien
    Im Sortiment stöbern
    Genres
    Hörbücher
    Aktionen
     Infos
    Mein Konto
    Warenkorb
    Meine Wunschliste
     Kundenservice
    Recherchedienst
    Fragen / AGB / Kontakt
    Partnerprogramm
    Impressum
    © by Forbidden Planet AG 1999-2021