SFr. 36.90
€ 36.90
BTC 0.005
LTC 0.324
ETH 0.0658


bestellen

Artikel-Nr. 7640706


Diesen Artikel in meine
Wunschliste
Diesen Artikel
weiterempfehlen
Diesen Preis
beobachten

Weitersagen:




Autor(en): 
  • Khalid Sayood
  • Dongsheng Bi
  • Michael W. Hoffman
  • Joint Source Channel Coding Using Arithmetic Codes 
     

    (Buch)
    Dieser Artikel gilt, aufgrund seiner Grösse, beim Versand als 2 Artikel!


    Übersicht
     
    Lieferstatus:   i.d.R. innert 5-10 Tagen versandfertig
    Genre:  Naturwissensch., Medizin, Technik 
    ISBN:  9781608451487 
    EAN-Code: 
    9781608451487 
    Verlag:  Morgan & Claypool Publishers 
    Einband:  Kartoniert  
    Sprache:  English  
    Dimensionen:  H 235 mm / B 191 mm / D 4 mm 
    Gewicht:  152 gr 
    Seiten:  78 
    Zus. Info:  3:B&W 7.5 x 9.25 in or 235 x 191 mm Perfect Bound on White w/Gloss Lam 
    Bewertung: Titel bewerten / Meinung schreiben
    Inhalt:
    Based on the encoding process, arithmetic codes can be viewed as tree codes and current proposals for decoding arithmetic codes with forbidden symbols belong to sequential decoding algorithms and their variants. In this monograph, we propose a new way of looking at arithmetic codes with forbidden symbols. If a limit is imposed on the maximum value of a key parameter in the encoder, this modified arithmetic encoder can also be modeled as a finite state machine and the code generated can be treated as a variable-length trellis code. The number of states used can be reduced and techniques used for decoding convolutional codes, such as the list Viterbi decoding algorithm, can be applied directly on the trellis. The finite state machine interpretation can be easily migrated to Markov source case. We can encode Markov sources without considering the conditional probabilities, while using the list Viterbi decoding algorithm which utilizes the conditional probabilities. We can also use context-based arithmetic coding to exploit the conditional probabilities of the Markov source and apply a finite state machine interpretation to this problem. The finite state machine interpretation also allows us to more systematically understand arithmetic codes with forbidden symbols. It allows us to find the partial distance spectrum of arithmetic codes with forbidden symbols. We also propose arithmetic codes with memories which use high memory but low implementation precision arithmetic codes. The low implementation precision results in a state machine with less complexity. The introduced input memories allow us to switch the probability functions used for arithmetic coding. Combining these two methods give us a huge parameter space of the arithmetic codes with forbidden symbols. Hence we can choose codes with better distance properties while maintaining the encoding efficiency and decoding complexity. A construction and search method is proposed and simulation results show that we can achieve a similar performance as turbo codes when we apply this approach to rate 2/3 arithmetic codes. Table of Contents: Introduction / Arithmetic Codes / Arithmetic Codes with Forbidden Symbols / Distance Property and Code Construction / Conclusion

      



    Wird aktuell angeschaut...
     

    Zurück zur letzten Ansicht


    AGB | Mein Konto | Impressum | Partnerprogramm
    Newsletter | 1Advd.ch RSS News-Feed Newsfeed | 1Advd.ch Facebook-Page Facebook | 1Advd.ch Google Plus-Page Google+ | 1Advd.ch Twitter-Page Twitter
    Forbidden Planet AG © 1999-2018
    Alle Angaben ohne Gewähr
     
    SUCHEN

     
     Kategorien
    Im Sortiment stöbern
    Genres
    Hörbücher
    Aktionen
     Infos
    Mein Konto
    Warenkorb
    Meine Wunschliste
     Kundenservice
    Recherchedienst
    Fragen / AGB / Kontakt
    Partnerprogramm
    Impressum
    © by Forbidden Planet AG 1999-2018
    Jetzt auch mit LiteCoin bestellen!